INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Third Year, 2012-13 Statistics - III, Midterm Examination, September 12, 2012

1. Suppose $Z_i \sim N(0, \sigma^2)$, $1 \leq i \leq 3$ are independent normally distributed random variables and let $0 < \rho < 1$. Define $X_1 = Z_1$, $X_2 = \rho Z_1 + \sqrt{1 - \rho^2} Z_2$ and $X_3 = \rho X_2 + \sqrt{1 - \rho^2} Z_3$. Let $\mathbf{X} = (X_1, X_2, X_3)'$ and Σ denote the covariance matrix of \mathbf{X} .

(a) Find the probability distribution of **X**.

(b) Find the probability distribution of $\mathbf{X}' \Sigma^{-1} \mathbf{X}$.

(c) Find the probability distribution of $\mathbf{X}'C'PC\mathbf{X}$ where $C'C = \Sigma^{-1}$ and P

is a symmetric idempotent matrix of rank 2.

(d) Find the conditional distribution of $\mathbf{X}' \Sigma^{-1} \mathbf{X}$ given $\sum_{i=1}^{3} Z_i = 0.$ [15]

2. Let A^- be a generalized inverse of a matrix A. Show that (a) $\operatorname{Rank}(A) = \operatorname{Rank}(AA^-) = \operatorname{Rank}(A^-A) \leq \operatorname{Rank}(A^-);$ (b) $A(A'A)^-A'$ is unique even though $(A'A)^-$ may not be unique; (c) $\mathcal{M}_C(A(A'A)^-A') = \mathcal{M}_C(A).$ [10]

3. Consider the model $\mathbf{Y} = X\beta + \epsilon$, where $\epsilon \sim N_n(\mathbf{0}, \sigma^2 I_n)$ and $X_{n \times p}$ may not have full column rank. Let $\hat{\beta}$ is any least squares estimator of β . Derive the joint distribution of $\mathbf{a}'\hat{\beta}$ and the Residual Sum of Squares when $\mathbf{a}'\beta$ is estimable. [10]

4. Consider the following model:

 $y_1 = \alpha + \delta + \epsilon_1$ $y_2 = \delta + \gamma + \epsilon_2$ $y_3 = -\alpha - 2\delta - \gamma + \epsilon_3$ $y_4 = -\alpha - \delta + \epsilon_4,$

where α, δ, γ are unknown constants and ϵ_i are uncorrelated random variables having mean 0 and variance σ^2 .

(a) Show that $\alpha - \gamma$ is estimable. What is its BLUE?

- (b) Does there exist a BLUE for $\alpha + \gamma$? Justify.
- (c) Find an unbiased estimate of σ^2 .

[15]